

the CpCo(18 OD)(OCH₃)⁻ ion, formed by addition of CH₃OD to CpCo¹⁸O⁻, reacts with H₂O to yield only CpCo(OH)(OCH₃)⁻, $CpCo(^{18}OD)(OH)^{-}$, and $CpCo(OH)_2^{-}$ as primary and secondary products, while CpCo(OH)(OCH₃)⁻ reacts with CD₃OD to yield CpCo(OH)(OCD₃)⁻, CpCo(OCH₃)(OCD₃)⁻, and CpCo(OCD₁)⁻ but no CpCo(OD)(OCH₃)⁻. Moreover, CpCo(OCH₃)₂⁻ undergoes consecutive alkoxyl exchanges with CD₃OD to produce CpCo- $(OCH_3)(OCD_3)^-$ and $CpCo(OCD_3)_2^-$.

Hydroxyl and alkoxyl group exchange in the reactions of 2 with water or alcohols requires oxidative insertion of cobalt into an O-H bond and formation of a hydridocobalt intermediate 3 possessing equivalent hydroxyl or alkoxyl groups and a "slipped" (η^3 or η^1)-Cp ligand or, alternatively, an η^4 -1,3-cyclopentadiene ligand.⁹ The stable H₂O adducts formed in the flow reactor with compositions corresponding to 3 are shown to have equivalent hydroxyl groups by the statistical yields for H_2O vs $H_2^{18}O$ loss from CID of the mixed isotopomers in the triple quadrupole. We also note that the occurrence of H_2O (or CH_3OH) loss as the lowest energy decomposition pathway for these ions argues against an $(\eta^4$ - $C_5H_6)C_0(OR)_1^-$ structure.

Approximately 10% of the reaction between 1 and CH₃OH yields $CpCo(OH)(H)^{-}$ by dehydrogenation and CH_2O loss. Reaction of CpCo¹⁸O⁻ with CH₃OD in the flow reactor followed by hydroxyl exchange of the dehydrogenation product $(m/z \ 145)$ with H_2O in the middle quadrupole yields only $CpCo(OH)(H)^{-1}$ (m/z 142) and no CpCo(OH)D⁻ (m/z 143) or CpCo(¹⁸OH)H⁻ (m/z 144) (eq 3). This indicates that dehydrogenation of CH₃OD occurs by initial O-D addition across the metal-oxygen bond followed by β -elimination of CH₂O.

$$\begin{array}{c} CpCo^{18}O^{-} \xrightarrow{CH_{3}OD} & CpCo(^{18}OD)(H)^{-} \xrightarrow{H_{2}O} & CpCo(OH)(H)^{-} \\ m/z \ 142 & m/z \ 145 & m/z \ 142 \end{array}$$

$$(3)$$

The reaction of 1 with 1,3-cyclopentadiene provides an especially interesting example of the sequence outlined in eq 1. Two primary products are observed corresponding to addition and proton transfer (eq 4). At higher cyclopentadiene flow rates, addi-

$$CpCoO^{-} +$$
 $A = C_5H_5^{-} + CpCoOH$ (4a)

$$\frac{b}{[He]} (C_5H_5)_2 CoOH^{-} \frac{C_5H_6}{-H_2O} (C_5H_5)_3 Co^{-} (4b)$$

tion-dehydration occurs to produce a tricyclopentadienylcobalt anion that is best formulated as $(\eta^5-Cp)(\eta^1-Cp)_2Co^{-.10}$ Reaction 4a is evidently not just a simple proton transfer, since reaction of 1 with methylcyclopentadiene (MeC_5H_5) yields nearly equal amounts of $MeC_5H_4^-$ and $C_5H_5^-$. Moreover, the mixed adduct $CpCo(OH)(MeC_5H_4)^-$ incorporates a single deuterium when reacted with D₂O and undergoes CID to yield nearly equal amounts of $MeC_5H_4^-$ and $C_5H_5^-$. These observations suggest that the two organic ligands in both the stabilized adduct and the proton transfer intermediate become chemically equivalent, presumably by way of the η^5 -to- η^1 haptotropic rearrangement shown in Scheme II.¹¹ A complete accounting of the reactions of CpCoO⁻ will be reported in a subsequent publication.

Acknowledgment. We gratefully acknowledge the National Science Foundation (CHE-8502515) for support of this work. R.R.S. thanks the Alfred P. Sloan Foundation for a fellowship.

(11) (a) Calderon, J. L.; Cotton, F. A.; Takats, J. J. Am. Chem. Soc. 1971, 93, 3587. (b) Hallam, B. F.; Pauson, P. L. J. Chem. Soc. 1956, 3030.

CO Hydrogenation, Deoxygenation, and C-C Coupling Promoted by [(silox)₂TaH₂]₂

Robert Toreki, Robert E. LaPointe, and Peter T. Wolczanski*[†]

> Department of Chemistry, Baker Laboratory Cornell University, Ithaca, New York 14853

Received August 3, 1987

The Fischer-Tropsch (F-T) reaction, considered a potential solution to future energy concerns, has commanded the attention of researchers in both heterogeneous and homogeneous catalysis for the past 15 years.¹⁻⁴ The most widely accepted mechanism² for this conversion of synthesis gas (CO/H_2) to hydrocarbons and oxygenates incorporates three crucial steps: (1) CO is deoxygenated,4-10 presumably via dissociative adsorption;4 (2) H-transfer to surface carbides²⁻⁵ or CO_{ads}^{7,11-13} produces surface methylene

(2) (a) Fischer, F.; Tropsch, H. Chem. Ber. 1926, 59, 830–836. (b) Brady, R. C., III; Pettit, R. J. Am. Chem. Soc. 1981, 103, 1287–1289. (c) Brady,

R. C., III; Pettit, R. *Ibid.* 1980, 102, 6182-6184. (d) George, P. M.; Avery,
N. R.; Weinberg, W. H.; Tebbe, F. N. *Ibid.* 1983, 105, 1393-1394.
(3) (a) Mins, C. A.; McCandlish, L. E. J. Phys. Chem. 1987, 91, 929-937.

(b) Zhang, X.; Biloen, P. J. Catal. 1986, 98, 468-476. (c) Vannice, M. A.; Sudhaker, C. J. Phys. Chem. 1984, 88, 2429-2432.

(4) (a) Biloen, P.; Helle, J. N.; Sachtler, W. M. H. J. Catal. 1979, 58, 95-107. (b) Biloen, P.; Helle, J. N.; van der Berg, F. G. A.; Sachtler, W. M. H. *Ibid.* 1983, 81, 450-463.

(5) (a) Bradley, J. S. Adv. Organomet. Chem. 1983, 22, 1-58. (b)
 Muetterties, E. L.; Stein, J. Chem. Rev. 1979, 79, 479-490. (c) Tachikawa,
 M.; Muetterties, E. L.; Prog. Inorg. Chem. 1981, 28, 203-238. (d) Horwitz,
 C. P.; Shriver, D. F. J. Am. Chem. Soc. 1985, 107, 8147-8153.

 (6) (a) Marsella, J.; Huffman, J. C.; Folting, K.; Caulton, K. G. *Inorg. Chem. Acta* 1985, 96, 161-170.
 (b) Marsella, J. A.; Huffman, J. C.; Folting, K.; Caulton, K. G. *J. Am. Chem. Soc.* 1981, 103, 5596-5598.
 (c) Wood, C. D.; Schrock, R. R. *Ibid.* 1979, 101, 5421-5422.
 (d) Planalp, R. P.; Andersen, N. C. (2019), 101, 5421-5422. R. A. Ibid. 1983, 105, 7774-7775. (e) Blenkers, J.; de Liefde Meijer, H. J.; Teuben, J. H. Organometallics 1983, 2, 1483-1484. (f) Shapley, J. R.; Park, J. T.; Churchill, M. R.; Ziller, J. W.; Beanan, L. R. J. Am. Chem. Soc. 1984, 106, 1144-1145. (g) Jacobsen, E. N.; Trost, M. K.; Bergman, R. G. Ibid. 1986, 108, 8092-8094.

 (7) (a) Erker, G.; Dorf, U.; Atwood, J. L.; Hunter, W. E. J. Am. Chem.
 Soc. 1986, 108, 2251–2257. (b) Kropp, K.; Skibbe, V.; Erker, G.; Kruger,
 C. Ibid. 1983, 105, 3353–3354. (c) Erker, G.; Kropp, K.; Kruger, C.; Chiang,
 A.-P. Chem. Ber. 1982, 115, 2447–2640. (d) Erker, G. Acc. Chem. Res. 1984, 17, 103-109

(8) Gambarotta, S.; Floriani, C.; Chiesi-Villa, A.; Guastini, C. Organometallics 1986, 5, 2425-2433, and references therein concerning CH₂O complexes

(9) (a) Chisholm, M. H.; Clark, D. L.; Huffman, J. C.; Smith, C. A. Organometallics 1987, 6, 1280-1291.
(b) Chisholm, M. H.; Heppert, J. A.; Huffman, J. C.; Streib, W. E. *Ibid.* 1985, 1771-1773.
(10) (a) LaPointe, R. E.; Wolczanski, P. T.; Mitchell, J. F. J. Am. Chem. Soc. 1986, 108, 6382-6384.
(b) Evans, W. J.; Grate, J. W.; Hughes, L. A.; Theorem I. J. Am. L. 1997, 1272-12720.

Zhang, H.; Atwood, J. L. Ibid. 1985, 107, 3728-3730.

0002-7863/87/1509-7558\$01.50/0 © 1987 American Chemical Society

^{(9) (}a) Huttner, G.; Brintzinger, H. H.; Bell, L. G.; Friedrich, P.; Benjenke, V.; Neugebauer, D. J. Organomet. Chem. 1978, 145, 329. (b) Campbell, A. J.; Cottrell, C. E.; Fyfe, C. A.; Bennett, M. J.; Cotton, F. A.; Davison, A.; Faller, J. W.; Lippard, W. J.; Morehouse, S. M.; Jeffrey, K. R. Inorg. Chem. 1976, 15, 1326. (c) Bunner, H.; Langer, M. J. Organomet. Chem. 1973, 54, 221. (d) Casey, C. P.; O'Connor, J. M. Organometallics 1988, 4, 384. (e) Revek, M. E.; Basolo, F. J. Am. Chem. Soc. **1984**, 106, 5908 and references therein. (f) Merola, J. S.; Kacmarcik, R. T.; Engen, D. V. J. Am. Chem. Soc. 1986, 108, 329.

^{(10) (}a) Calderon, J. L.; Cotton, F. A.; Legzdins, J. J. Am. Chem. Soc. 1969, 91, 2528. (b) Rogers, R. D.; Bynum, R. V.; Atwood, J. L. J. Am. Chem. Soc. 1978, 100, 5238. (c) Calderon, J. L.; Cotton, F. A.; DeBoer, B. G.; Takats, J. J. Am. Chem. Soc. 1971, 93, 3592.

⁺Sloan Foundation Fellow, 1987-1989.

^{(1) (}a) Falbe, J. Chemical Feedstocks from Coal; John Wiley and Sons: New York, 1981. (b) Dombeck, B. D. Adv. Catal. 1983, 32, 325-416. (c) Bell, A. T. Catal. Rev.-Sci. Eng. 1981, 23, 203-232. (d) Biloen, P.; Sachtler, W. M. H. Adv. Catal. 1981, 30, 165-216. (e) Rofer-DePoorter, C. K. Chem. Rev. 1981, 81, 447-474.

groups;^{2,14} (3) C-C bond formation occurs through oligomerization of (CH₂)_{ads} (Scheme I).^{2-4,14} Various organometallic species model the individual steps,⁵⁻¹⁵ yet fall short of corroborating the entire sequence. Reported herein is the carbonylation of [(si $lox)_{2}TaH_{2}]_{2}$ (1,¹⁶ silox = t-Bu₃SiO⁻)¹⁷ and successive reactions which encompass the critical transformations of the F-T pathway.

When treated with 1.0 equiv of CO at -78 °C, a hexane slurry of orange-brown 1^{16,18} precipitated thermally sensitive, off-white $[(silox)_2TaH]_2(\mu-O)(\mu-CH_2)$ (2) in 67% yield (Scheme II).¹⁹ Two broad resonances at δ 7.08 and δ 15.99 correspond to the μ -CH₂ group and the terminal hydrides (ν (TaH/D) = 1792/1285 cm⁻¹),

(11) Sung, S.-S.; Hoffmann, R. J. Am. Chem. Soc. 1985, 107, 578-584.

(11) Sung, S.-S.; HOITMANN, K. J. Am. Chem. Soc. 1985, 107, 578-584.
(12) Kelley, R. D.; Semancik, S. J. Catal. 1983, 84, 248-252.
(13) (a) Gladysz, J. A. Adv. Organomet. Chem. 1982, 20, 1-38. (b) Moloy, K. G.; Marks, T. J. J. Am. Chem. Soc. 1984, 106, 7051-7064. (c) Wayland, B. B.; Woods, B. Z.; Pierce, R. Ibid. 1982, 104, 302-303. (d) Paonessa, R. S.; Thomas, N. C.; Halpern, J. Ibid. 1985, 107, 4333-4335. (e) Floriani, C. Pure Appl. Chem. 1983, 55, 1-10.
(14) (a) Harmorp. W. Adv. Organomet. Chem. 1982, 20, 156, 262.

(14) (a) Herrmann, W. A. Adv. Organomet. Chem. 1982, 20, 159-263.
(b) Herrmann, W. A. Angew. Chem., Int. Ed. Engl. 1982, 21, 117-130.
(15) (a) Wolczanski, P. T.; Bercaw, J. E. Acc. Chem. Res. 1980, 13, 121-127.
(b) Roddick, D. M.; Fryzuk, M. D.; Seidler, P. F.; Hillhouse, G. L.; Bercaw, J. E. Organometallics 1985, 4, 97-104. (c) Barger, P. T.; San-Darison B. D. A. Surger, D. P. S. 1985, 4, 97-104. (c) Barger, P. T.; San-Darison B. D. A. Surger, D. P. S. 1985, 4, 97-104. (c) Barger, P. T.; San-Darison B. D. A. Surger, D. P. S. 1985, 4, 97-104. (c) Barger, P. T.; San-Darison B. D. A. Surger, D. P. S. 1985, 4, 97-104. (c) Barger, P. T.; San-Darison B. D. A. Surger, D. P. S. 1985, 4, 97-104. (c) Barger, P. T.; San-Darison B. D. A. Surger, D. P. S. 1985, 4, 97-104. (c) Barger, P. T.; San-Darison B. D. A. Surger, D. P. S. 1985, 4, 97-104. (c) Barger, P. T.; San-Darison B. D. A. Surger, D. P. S. 1985, 4, 97-104. (c) Barger, P. T.; San-Darison B. D. A. Surger, D. S. 1985, 4, 97-104. (c) Barger, P. T.; San-Darison B. D. A. Surger, D. S. 1985, 4, 97-104. (c) Barger, P. T.; San-Darison B. D. A. Surger, D. S. 1985, 4, 97-104. (c) Barger, P. T.; San-Darison B. D. A. Surger, D. S. 1985, 4, 97-104. (c) Barger, P. T.; San-Darison B. D. A. Surger, D. S. 1985, 4, 97-104. (c) Barger, P. T.; San-Darison B. D. A. Surger, D. S. 1985, 4, 97-104. (c) Barger, P. T.; San-Darison B. D. A. Surger, D. Surger, D. S. 1985, 4, 97-104. (c) Barger, P. T.; San-Darison B. S. 1985, 4, 97-104. (c) Barger, P. T.; San-Darison B. S. 1985, 4, 97-104. (c) Barger, P. T.; San-Darison B. S. 1985, 4, 97-104. (c) Barger, P. T.; San-Darison B. S. 1985, 4, 97-104. (c) Barger, P. T.; San-Darison B. S. 1985, 4, 97-104. (c) Barger, P. T.; San-Darison B. 1985, 4, 97-104. (c) Barger, P. T.; San-Darison B. 1985, 4, 97-104. (c) Barger, P. T.; San-Darison B. 1985, 4, 97-104. (c) Barger, P. T.; San-Darison B. 1985, 4, 97-104. (c) Barger, P. T.; San-Darison B. 1985, 4, 97-104. (c) Barger, P. T.; San-Darison B. 199, 199, 199, 199, 199, tarsiero, B. D.; Armantrout, J.; Bercaw, J. E. J. Am. Chem. Soc. 1984, 106, 5178-5186

(16) LaPointe, R. E.; Wolczanski, P. T. J. Am. Chem. Soc. 1986, 108, 3535-353

(17) (a) LaPointe, R. E.; Wolczanski, P. T.; Van Duyne, G. D. Organo-metallics 1985, 4, 1810-1818. (b) Dexheimer, E. M.; Spialter, L.; Smithson, L. D. J. Organomet. Chem. 1975, 102, 21-27. (c) Weidenbruch, M.; Pierrard, ; Pesel, H. Z. Naturforsch., B.: Anorg. Chem., Org. Chem. 1978, 33B, 1468-1471.

(18) The near D_{2d} structure of 1 indicated has been confirmed by X-ray structural studies: Van Duyne, G. D.; Churchill, M. R.; Wolczanski, P. T., unpublished results.

(19) 2: decomposition $t_{1/2} \sim 4$ h at 25 °C in benzene; $t_{1/2} \sim 12$ h in the solid state (25 °C); ¹H NMR (C₆D₆) δ 1.28 (s, silox, 27 H); ¹³C {¹H} NMR δ 23.56 (SiC), 30.56 (CH₃).

respectively. Prepared via 1 and ¹³CO, 2-¹³C manifests a triplet in the ¹³C NMR at δ 178.10 (J_{CH} = 135 Hz) characteristic of the μ -methylene. When quenched with H₂O, 2 generated 0.9 equiv of CH_4 and 1.8 H_2 upon decomposition.²⁰ A similar quench with D₂O provided \geq 80% CH₂D₂, <20% CH₃D, and a trace of CH₄.²¹

An uptake of 1.0 CO was noted when 2-13C was exposed to excess carbon monoxide, generating another thermally sensitive, colorless complex, [(silox)₂TaH](μ -¹³CHO)(μ -CH₂O)[Ta(silox)₂] $(3^{-13}CHO)$,²² in which the ¹³C-O bond has reformed. Doublets $(J_{\rm HH} = 3.5 \text{ Hz})$ at δ 2.92 and δ 3.36 characterize the μ -CH₂O fragment, while singlets at δ 5.80 and δ 14.99 are observed for the μ -CHO unit and terminal hydride (ν (TaH/D) = 1774/1274 cm⁻¹), respectively. The ¹³C NMR spectrum of 3-¹³CHO/¹³CH₂O exhibits a doublet $(J_{CH} = 166 \text{ Hz})$ at $\delta 134.94$ for the formyl and a "triplet" $(J_{CH} = 159 \text{ Hz})$ at $\delta 79.08$ corresponding to the formaldehyde. An aqueous degradation of 3 produced 1.0 H_2 and 2.0 CH₃OH.²³ The structure of 3-¹³CHO shown in Scheme II is consistent with NOE experiments,²⁴ and the spectral data compare favorably with similar molecules^{7,8} such as (silox)₃Ta- $(\eta^2 - \hat{C}H_2O)$ (¹³C NMR: δ 93.87, $J_{CH} = 159$ Hz)¹⁶ and thermally unstable, colorless $[(silox)_2TaCl]_2(\mu-H)(\mu-CHO)$ (5, eq 1)²⁵ prepared from $[(silox)_2TaCl]_2(\mu-H)_2^{16}$ and CO at -78 °C (¹³C NMR: δ 160.3, J_{CH} = 167 Hz). X-ray structural characteri-

$$[(silox)_2CITa]_2(\mu-H)_2 \xrightarrow{CO} (silox)_2CITa \xrightarrow{CO} TaCl(silox)_2 (1)$$

н

zation²⁶ of Ta₂(η^5 -C₅Me₄Et)₂Cl₄(μ -H)(μ -CHO) (¹³C NMR: δ 168, $J_{CH} = 168$ Hz), prepared by Schrock et al.,²⁷ provides precedence for the μ -formyls of 3 and 5. The chloroformyl 5 produced 0.86 equiv of MeOH when decomposed by H₂O and 1.0 H₂ when subjected to HCl.²⁷

When 3-13CHO remained at 25 °C in the solid state or in solution for > 2 days, deoxygenation concomitant with C-C bond formation occurred, affording light-yellow, crystalline µ-ethylidene [(silox)₂Ta]₂(μ -O)₂(μ -¹³CHMe) (4-¹³CHMe, 61%).²⁸ A ¹³C resonance at δ 191.22 (¹J_{CH} = 109, ²J_{CH} = 7 Hz) corresponds to the carbon bridge while the Me group is observed at δ 25.67 $({}^{1}J_{CH} = 128, {}^{2}J_{CH} = 4 \text{ Hz})$. From synthesis of $4 \cdot {}^{13}CH^{13}CH_{3}$, a typical sp³-sp³ coupling $({}^{1}J_{CC})^{29}$ of 36 Hz was obtained. The ${}^{1}H$ NMR of 4 reveals a doublet at δ 3.81 (Me) and a quartet at δ 5.51 (CHMe, ${}^{3}J$ = 7.4 Hz). Exposure of 4 to H₂O effected degradation, providing 1.0 equiv of C_2H_6 (IR). The μ -ethylidene complex 4 may also be prepared by thermolysis of 3 at 60 °C (1 h, hexane); 4 is quite robust, decomposing to give undetermined products at 90 °C.

(21) Determined by MS and confirmed via analysis of an H₂O quench of 2- d_4 which results in CH₂D₂, CD₃H, and CD₄ in approximately the same ratio.

(22) 3: the transformation to 4 occurs with $t_{1/2} \sim 1-2$ h at 25 °C in benzene; $t_{1/2} \sim 2-3$ h in the solid state (25 °C). From 2, 3 can be isolated in 55% yield; it may be more conveniently prepared from 1 (1.8 CO uptake) in 85% yield: ¹H NMR (C₆D₆) δ 1.15, 1.21, 1.30, 1.35 (s, silox, 27 H each); ¹³C [¹H] NMR δ 23.49, 23.64, 23.84, 24.07 (SiC), 30.52, 30.60, 30.86, 31.17 (CH₃). IR spectra of 3, 3⁻¹³CHO, and 3⁻¹³CHO/¹³CH₂O failed to reveal C-O (23) Measured by GC. When quenched with biox bands.
 (23) Measured by GC. When quenched with D₂O, the methanol generated

was tentatively assigned as a ~ 1 :1 mixture of CHD₂OD and CH₂DOD by ¹³C NMR.

(24) NOE experiments suggest: (1) the TaH is proximate to the μ -CH₂O unit; (2) one of the μ -CH₂O protons is near the μ -CHO.

(2) 5: decomposition $t_{1/2} \sim 3$ h at 25 °C in benzene; $t_{1/2} \sim 12$ h in the solid stat; ¹H NMR (C_6D_6) δ 1.24, 1.26, 1.28, 1.36 (s, silox, 27 H each), 6.18 (d, μ -CHO, $J_{\rm HH} = 2.8$ Hz), 9.56 (d, μ -H, $J_{\rm HH} = 2.8$ Hz); ¹³C NMR of **5**.¹³C δ 23.76, 24.00, 24.32, 25.76 (SiC), 30.39 (CH₃), 160.3 (br, μ -CHO, $J_{\rm CH} = 167$, $^{3}J_{\rm CH} = 3$ Hz); IR (Nu(o)) ν (Ta₂H) = 1270 (v br) cm⁻¹. (26) Churchill, M. R.; Wasserman, H. J. *Inorg. Chem.* **1982**, 21, 226–230. (27) Belmonte, P. A.; Cloke, G. N.; Schrock, R. R. J. Am. Chem. Soc.

1983, 105, 2643-2650. This work discusses quenching procedures which free alkoxides. (28) 4: ¹H NMR (C₆D₆) δ 1.28 (s, silox, 108 H); ¹³C {¹H} NMR δ 23.97

(SiC), 30.53 (CH₃). Anal. Calcd for $Ta_2Si_4O_6C_{50}H_{112}$: C, 46.78; H, 8.79. Found: C, 46.57; H, 8.65. M_r found 1053 (calcd 1284).

(29) Marshall, J. L. Carbon-Carbon and Carbon-Proton NMR Couplings;
 Verlag Chemie International: Deerfield Beach, FL, 1983.

⁽²⁰⁾ All measurements of gas release or uptake were conducted via Toepler pump ($\pm 5-10\%$, depending on the scale and purity of reagents)

The carbonylation chemistry of $[(silox)_2TaH_2]_2$ (1) tracks the critical sequence of complicated reactions pertaining to the F-T mechanism (deoxygenation, H-C and C-C bond formation) and provides alternative views of certain heterogeneous transformations. Since 2 is formed directly, the generation of $(CH_2)_{ads}$ via Htransfer concomitant with or prior to C-O bond scission must still be considered;³⁰ the dissociative adsorption of CO may not be necessary. Most importantly, a C-O bond has been broken, reformed, and broken again in the conversion of 1 to 4.³¹ Extrapolating to heterogeneous processes, oxygenated surfaces may serve as reservoirs for CH, CH₂, and, presumably, CH₃³² func-tionalities via $(OCH)_{ads}$,³³ $(OCH_2)_{ads}$,³⁴ and $(OCH_3)_{ads}$. Methylene units adsorbed on actual F-T surfaces are therefore *not con*strained to be solely metal-bound. Further mechanistic studies and characterizations of thermal, hydrogenation, and other carbonylation products are currently being undertaken.

Acknowledgment. Support from the Air Force Office of Scientific Research, Cornell University, Chevron Research Company, and the National Science Foundation (CHE-8308272) is gratefully acknowledged. We thank Mark M. Banaszak Holl for experimental assistance and the NSF and NIH for support of the Cornell NMR Facility.

(30) (a) Pichler, H.; Schultz, H. Chem. Ing. Tech. 1970, 12, 1160-1174. (b) Masters, C. Adv. Organomet. Chem. 1979, 17, 61-103.

(32) In view of ref 31, the conversion of 3 to 4 may proceed via the following: (1) reductive elimination to form a μ -OCH₃; (2) oxidative addition of the O-CH₃ bond, generating a Ta-CH₃; (3) Me transfer to μ -CHO concomitant with deoxygenation.

 (33) Nijs, H. H.; Jacobs, P. A. J. Catal. 1980, 66, 401-411.
 (34) Anton, A. B.; Parmeter, J. E.; Weinberg, W. H. J. Am. Chem. Soc. **1986**, 108, 1823-1833.

A General Class of Stable Alkyl Halide Complexes: Synthesis, Structure, and Reactivity of Alkyl Iodide **Complexes of the Formula** $[(\eta^{5}-C_{5}H_{5})Re(NO)(PPh_{3})(IR)]^{+}BF_{4}^{-}$

Charles H. Winter, Atta M. Arif, and J. A. Gladysz*

Department of Chemistry, University of Utah Salt Lake City, Utah 84112 Received August 3, 1987

Of all of the common organic functional groups, alkyl halides (RX) have by far the least developed coordination chemistry.¹⁻³ To our knowledge isolable 1:1 adducts are unknown, although the bis(methyl iodide) complex $[(H)_2 Ir(PPh_3)_2 (ICH_3)_2]^+X^-$ has been recently described by Crabtree.¹ The lack of stable alkyl halide complexes has generally been attributed to poor Lewis basicity

Figure 1. Structure of the cation of $[(\eta^5-C_5H_5)Re(NO)(PPh_3) (ICH_2Si(CH_3)_3]^+BF_4^-(CH_2Cl_2)_{0.5}$ (4d·(CH_2Cl_2)_{0.5}). Selected bond lengths (Å) and angles (deg): Re-I, 2.678 (1); Re-P, 2.385 (3); Re-N, 1.740 (9); N-O, 1.20 (1); I-Cl, 2.18 (1); Cl-Si, 1.88 (2); I-Re-P, 91.82 (9); I-Re-N, 97.0 (4); P-Re-N, 91.1 (3); Re-N-O, 177 (1); Re-I-Cl, 102.5 (5); I-Cl-Si, 114.5 (9).

and/or the availability of facile decomposition pathways such as oxidative addition. In this communication, we report the synthesis and isolation of alkyl iodide complexes of the formula $[(\eta^5 C_5H_5$ (NO)(PPh₃)(IR)]⁺BF₄⁻ and other data that suggest that alkyl halide complexes may be far more accessible than previously realized. Importantly, the coordination of alkyl halides to metals provides a new generation of leaving groups that can be easily modified and, as in the reported examples, rendered chiral.

We recently reported that the reaction of methyl complex $(\eta^{5}-C_{5}H_{5})Re(NO)(PPh_{3})(CH_{3})$ (1) and HBF₄·Et₂O (CH₂Cl₂, -78 °C) gave a reactive intermediate (stable to -20 °C) formulated as the chiral pyramidal Lewis acid $[(\eta^5-C_5H_5)Re(NO) (PPh_3)]^+BF_4^-$ (2) or the CH_2Cl_2 adduct $[(\eta^5-C_5H_5)Re(NO)-(PPh_3)(ClCH_2Cl)]^+BF_4^-$ (3).⁴ Subsequent ¹³C NMR experiments have provided good evidence for coordinated CH2Cl2.4b Hence, the reaction of 1 and HBF4.Et2O was followed by addition of alkyl iodides RI (3.0 equiv, Scheme I). New products formed upon warming (-40 to 0 °C, ca. 95%, ³¹P NMR). Workup gave alkyl iodide complexes $[(\eta^5-C_5H_5)Re(NO)(PPh_3)(IR)]^+BF_4^-$ (4; $R = CH_3$ (a), CH_2CH_3 (b), $CH_2CH_2CH_3$ (c), $CH_2Si(CH_3)_3$ (d)) as analytically pure powders in 67-87% yields.⁵ The structures of 4a-d followed from their spectroscopic properties and in particular from the downfield shifts exhibited by the ICH carbons and protons in ¹³C and ¹H NMR spectra.⁵ Oxidative addition products such as $[(\eta^5-C_5H_5)Re(NO)(PPh_3)(CH_3)(Br)]^+X^-$ show upfield ReCH ¹H and ¹³C NMR resonances that are also strongly coupled to phosphorus.⁶

Crystals of the solvate $4d \cdot (CH_2Cl_2)_{0.5}$ were grown from CH₂Cl₂/hexanes, and the X-ray structure was determined (Figure 1) as described in the Supplementary Material. The carbon-iodine bond (2.18 (1) Å) is very slightly longer than that in ethyl iodide (2.139 (5) Å),⁷ and the Re–I bond (2.678 (1) Å) is shorter than

⁽³¹⁾ A similar C-O bond breakage has been observed in the conversion of $Cp^*_2TaH(\eta^2-CH_2O)$ ($Cp^* = \eta^5-C_5Me_5$) to $Cp^*_2Ta=O(CH_3)$, including evidence for a preequilibrium involving Cp^{*}₂Ta(OCH₃). See: van Asselt, A.; Burger, B. J.; Gibson, V. C.; Bercaw, J. E. J. Am. Chem. Soc. **1986**, 108, 5347-5349.

^{(1) (}a) Crabtree, R. H.; Faller, J. W.; Mellea, M. F.; Quirk, J. M. Organometallics 1982, 1, 1361. (b) Burk, M. J.; Segmuller, B.; Crabtree, R. H. Ibid. 1987, 6, 2241.

⁽²⁾ For chelating aryl halide complexes $o-C_6H_4X(DL_n)$ (DL_n = PAr₂, S, (2) For cherating aryi nance complexes 5-C_cT₄X(DL_n)(DL_n = PAF₂, S, Br, I), see ref 1 and the following: (a) Burk, M. J.; Crabtree, R. H.; Holt, E. M. Organometallics 1984, 3, 638. (b) Crabtree, R. H.; Mellea, M. F.; Quirk, J. M. J. Am. Chem. Soc. 1984, 106, 2913. (c) Barcelő, F.; Lahuerta, P.; Ubeda, M. A.; Foces-Foces, C.; Cano, F. H.; Martinez-Ripoll, M. J. Chem. Soc., Chem. Commun. 1985, 43. (d) Solans, X.; Font-Altaba, M.; Aguilô, M.; Miravitilles, C.; Besteiro, J. C.; Lahuerta, P. Acta. Crystallogr, Sect. C: Curvet Struct Commun. 1985, 741. (2) Cotton F. A.: Lahuerta, P. Cryst. Struct. Commun. 1985, C41, 841. (e) Cotton, F. A.; Lahuerta, P. Sanau, M.; Schwotzer, W.; Solana, I. Inorg. Chem. **1986**, 25, 3526. (f) Kulawiec, R. J.; Holt, E. M.; Lavin, M.; Crabtree, R. H. Ibid. **1987**, 26, 2559. (g) Catala, R. M.; Cruz-Garritz, D.; Hills, A.; Hughes, D. L.; Richards, R. Sosa, P.; Torrens, H. J. Chem. Soc., Chem. Commun. 1987, 261

^{(3) (}a) A diene-chelated cyclopropyl bromide complex has recently been reported: Liotta, F. J., Jr.; Van Duyne, G.; Carpenter, B. K. Organometallics 1987, 6, 1010. (b) See, also: Cotton, F. A.; Ilsley, W. H.; Kaim, W. J. Am. Chem. Soc. 1980, 102, 3475.

^{(4) (}a) Fernandez, J. M.; Gladysz, J. A. Inorg. Chem. 1986, 25, 2672. (b) Fernandez, J. M., unpublished results.

Fernández, J. M., unpublished results. (5) All new compounds were characterized by microanalysis, IR, and NMR (¹H, ¹³C, ³¹P) as described in the Supplementary Material. Selected NMR data (CD₂Cl₂) for **4b**, **10b** (-60 °C), and **11b** (-40 °C): ¹H NMR (δ) 5.62, 5.56, 5.59 (s, C₅H₅), 3.77, 4.18, 4.43 (dq, *J* = 9, 7 Hz, CHH'), 3.46, 3.73, 3.92 (dq, *J* = 9, 7 Hz, CHH'), 1.65, 1.62, 1.54 (t, *J* = 7 Hz, CH₃); ¹³C NMR (ppm) 92.1, 91.9, 91.5 (s, C₅H₅), 24.0, 56.7, 69.9 (d, *J* = 3.1, ≤2.0, 1.8 Hz, CH₂), 18.8, 17.8, 17.5 (s, CH₃); ³¹P (ppm) 11.8, 12.9, 13.6 (s); NMR of ICH₂CH₃ (CD₅Cl₂) ¹H NMR (δ) 3.20 (q, *J* = 7.5 Hz, CH₂), 1.82 (t, *J* = 7.5 Hz, CH₃); ¹³C NMR (ppm) 20.89 (s, CH₃), -0.23 (s, CH₂). (6) O'Conpare Te L unpublished results Linversity of Litab: 192nd Na-

⁽⁶⁾ O'Connor, E. J., unpublished results, University of Utah; 192nd National Meeting of the American Chemical Society, Anaheim, CA, September 12, 1986; abstract INOR 347

⁽⁷⁾ Kasuya, T.; Oka, T. J. Phys. Soc. Jpn. 1960, 15, 296. For other CCH₂-I bond lengths (2.13-2.14 Å), see: Williams, J. Q.; Gordy, W. J. Chem. Phys. 1950, 18, 994; Ghisalberti, E. L.; Jefferies, P. R.; Raston, C. L.; Shelton, P. W.; Swatt, A. D. Williams, J. U. Shelton, P. W.; Swatt, A. D. Williams, J. R.; Raston, C. L.; Skelton, B. W.; Stuart, A. D.; White, A. H. J. Chem. Soc., Perkin Trans. 2 1981, 583.